A Fast Local Search Algorithm for the Latin Square Completion Problem

نویسندگان

چکیده

The Latin square completion (LSC) problem is an important NP-complete with numerous applications. Given its theoretical and practical importance, several algorithms are designed for solving the LSC problem. In this work, to further improve performance, a fast local search algorithm developed based on three main ideas. Firstly, reduction reasoning technique used reduce scale of space. Secondly, we propose novel conflict value selection heuristic, which considers history conflicting information vertices as criterion when more than one vertex have equal values primary scoring function. Thirdly, during phase, record previous then make use these restart candidate solution. Experimental results show that our proposed significantly outperforms state-of-the-art heuristic almost all instances in terms success rate run time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

An Efficient Local Search for Partial Latin Square Extension Problem

A partial Latin square (PLS) is a partial assignment of n symbols to an n×n grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood...

متن کامل

An Efficient Local Search for the Constrained Symmetric Latin Square Construction Problem

A Latin square is a complete assignment of [n] = {1, . . . , n} to an n × n grid such that, in each row and in each column, each value in [n] appears exactly once. A symmetric Latin square (SLS ) is a Latin square that is symmetric in the matrix sense. In what we call the constrained SLS construction (CSLSC ) problem, we are given a subset F of [n] and are asked to construct an SLS so that, whe...

متن کامل

Completion Latin Square for Wavelength Routing

Optical network uses a tool for routing called Latin router. These routers use particular algorithms for routing. For example, we can refer to LDF algorithm that uses backtracking (one of CSP methods) for problem solving. In this paper, we proposed new approached for completion routing table (DRA&CRA algorithm) and compare with pervious proposed ways and showed numbers of backtracking, blocking...

متن کامل

Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem

An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i9.21274